

Choosing a Statistical Test

Website: http://sigma.coventry.ac.uk

Email: sigma_staff@live.coventry.ac.uk

1. Type of data

Types of data

1. Type of data

- What type of data do you have (scale or categorical)?
- Your variable of interest is often referred to as the outcome variable (or dependent variable)

2. Nature of test

– Are you looking for a difference?

– Are you looking for a relationship/association/correlation?

2. Nature of test

- Are you looking for a difference?
 - Are your groups independent or matched/dependent?

– Are you looking for a relationship/association/correlation?

2. Nature of test

- Are you looking for a difference?
 - Are your groups independent or matched/dependent?
 - E.g. Does having a choice of diet impact how much weight a patient loses?

- Are you looking for a relationship/association/correlation?
 - E.g. Is there a association between gender and choice of diet?

Tests for differences between 2 groups

Scale outcome variable	Ordinal outcome variable
Independent Samples t-testPaired Samples t-test	Mann-Whitney testWilcoxon Signed Rank test

Tests for differences between 3 or more groups

Scale outcome variable	Ordinal outcome variable
Analysis of variance (ANOVA)	Kruskal-Wallis test

Methods to investigate association/relationship

Two scale outcome variables	Two ordinal outcome variables or one ordinal and one scale	Two nominal outcome variables or one nominal and one ordinal
Pearson's CorrelationRegression	Spearman's Rank Correlation	Chi-Squared test

Methods to explore more complex relationships

Multiple regression, Analysis of Covariance (ANCOVA), and lots more....

Tests for differences between 2 groups

Scale outcome variable	Ordinal outcome variable
Independent Samples t-test	Mann-Whitney test
Paired Samples t-test	Wilcoxon Signed Rank test ✓

Tests for differences between 3 or more groups

Scale outcome variable	Ordinal outcome variable
Analysis of variance (ANOVA)	Kruskal-Wallis test

These tests can also be used when assumptions for the corresponding t-tests or ANOVA are not satisfied

Methods to investigate association/relationship

Two scale outcome variables	Two ordinal outcome variables or one ordinal and one scale	Two nominal outcome variables or one nominal and one ordinal
Pearson's CorrelationRegression	Spearman's Rank Correlation	Chi-Squared test

Methods to explore more complex relationships

Multiple regression, Analysis of Covariance (ANCOVA), and lots more....

- 3. Are test assumptions satisfied?
 - When using a statistical test, certain assumptions must be checked (e.g. data type, Normality, equal variances, no outliers, independence etc)
 - You will need to check the required assumptions for each test
 - Google is a good starting point!
 - Pop along to see us in a sigma drop-in session (https://sigma.coventry.ac.uk/DropIns)

Example 1: Test for Difference

Does having a choice of diet (choice vs no choice) impact mean weight loss (kg)?

Example 1: Test for Difference

Does having a choice of diet (choice vs no choice) impact mean weight loss (kg)?

1.	Data type = Scale
2.	Nature of test = Difference
	comparing weight loss between 2 independent groups

Example 1: Test for Difference

Does having a choice of diet (choice vs no choice) impact mean weight loss (kg)?

1.	Data type = Scale
2.	Nature of test = Difference
	comparing weight loss between 2 independent groups

Independent samples t-test

Don't forget to check that the conditions/assumptions for the test are satisfied

Example 2: Test for Difference

Is there a difference in mean weight (kg) before and after attending an exercise programme?

Example 2: Test for Difference

Is there a difference in mean weight (kg) before and after attending an exercise programme?

1.	Data type = Scale
2.	Nature of test = Difference
	comparing weight loss between 2 dependent groups

Example 2: Test for Difference

Is there a difference in mean weight (kg) before and after attending an exercise programme?

1.	Data type = Scale
2.	Nature of test = Difference
	comparing weight loss between 2 dependent groups

Paired Samples t-test

Don't forget to check that the conditions/assumptions for the test are satisfied

Is there an association between gender (M/F/other) and choice of diet (choice vs. no choice)?

Is there an association between gender (M/F/other) and choice of diet (choice vs. no choice)?

1.	Data type = Categorical (nominal)
2.	Nature of test = Association
	Association between two nominal outcome variables

Is there an association between gender (M/F/other) and choice of diet (choice vs. no choice)?

1.	Data type = Categorical (nominal)
2.	Nature of test = Association
	Association between two nominal outcome variables

Chi-Squared Test

Don't forget to check that the conditions/assumptions for the test are satisfied

Is there a linear association between weight (kg) before and after a diet intervention?

Is there a linear association between weight (kg) before and after a diet intervention?

1.	Data type = Scale
2.	Nature of test = Association
	Association between two scale variables (draw a scatter plot)

Is there a linear association between weight (kg) before and after a diet intervention?

1.	Data type = Scale
2.	Nature of test = Association
	Association between two scale variables (draw a scatter plot)

Pearson's Correlation

^{*} We need to check that some conditions/assumptions are satisfied to use this test

Is there a linear association between weight (kg) before and after a diet intervention?

1.	Data type = Scale
2.	Nature of test = Association
	Association between two scale variables (draw a scatter plot)

Pearson's Correlation ...and perhaps regression too

Don't forget to check that the conditions/assumptions for the test are satisfied

Final Hints

- Always explore your data before choosing statistical tests
 - ➤ Histograms to visualise scale variables
 - > Scatter plots to look at relationships between scale variables
 - Cross-tabulations to look at associations between categorical variables
 - Look for outliers
 - > Think about what to do with missing data
- Check the test assumptions
- Don't panic! Get in touch with sigma for help ☺

Some useful resources

sigma website

http://sigma.coventry.ac.uk

Statistics Resources

http://sigma.coventry.ac.uk/statistics-home

Drop-in

 We run drop-in sessions in our centre in the Lanchester Library as well as online. Check out the drop-in timetable at this link http://sigma.coventry.ac.uk/DropIns

Statistics Resources Categories

